
TECHNICAL NOTES AND SHORT PAPERS 

Interpolation by Algebraic and Trigonometric 
Polynomials 

By A. C. R. Newbery 

The problem to be examined here is that of determining an algebraic or trigono- 
metric polynomial of minimal degree exactly satisfying given constraints. The 
constraints to be considered are of the following forms: (A) Ordinates are specified 
at given distinct abscissas, (B) Slopes are specified at some or all of the points where 
the ordinates are constrained, (C) pth derivatives are specified at some points for 
which all lower-order derivatives, including the zeroth (i.e. the ordinate), are 
also specified. The polynomials which we will construct to satisfy such constraints 
will be of the form P.(x) = E crx' or S.(x) = 1:' b, sin rx. 

First we consider the standard Lagrangian problem with constraints of type 
(A) to be satisfied by an algebraic polynomial. Let flk (X) = Ho ( xi), and 
let Lk(x) be a kth degree polynomial with specified ordinates fi at the k + 1 dis- 
tinct abscissas xi, i = 0, 1, ... , k. A recursive procedure for generating the se- 
quence of polynomials Lk(X) is defined by writing Lo = fo, Ho = x - xo , and then, 
for k = 0, 1, * * 

bk = [k+l - Lk (Xk+l) I/ Hk (Xk+l ), 

(1) Lk+l(X) = Lk(X) + bk lk (X), 

J1k+1 (X) = (X - Xk+l) Hfk (X)- 

This is the same as Newton's formula [1] except that for each k we obtain Lk(X) 

explicitly rather than as a sum in the form Ao + Al(x - x0) + ** + 
AkH0 (X - Xi). 

The algorithm (1) can be modified to accommodate constraints of type (B). 
Let LN(x) be a polynomial of Nth degree satisfying all the ordinate constraints 
and possibly some of the derivative constraints; LN+1(X) is to satisfy the same con- 
straints with the additional requirement that LN+1(x,) -f (x ). Then we may 
write 

hN= fp - LN'(XP)I/HN (Xv), 

(2) LN+j(x) = LN(X) + hN HN (X), 

IN+1 (X) = (X - XP) HN(X) . 

This is a convenient representation of the Hermite interpolation algorithm as 
presented by Natanson [2]. Note that this version is more general than the one 
commonly found in numerical analysis texts, because it is not presupposed that 
there must be a derivative constraint at every abscissa. In order to accommodate 
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constraints of type (C) one only has to replace the single primes in (2) by primes 
of appropriate multiplicity. 

We now show how to construct a trigonometric polynomial Sn(x) = b &. sin rx 
satisfying n constraints of the type considered above. We shall assume that the 
interval has been normalized to [0, ir] and that the nodes are strictly within this 
interval. As before, we consider constraints of type (A) first. Let Sk(X) satisfy k 
ordinate constraints, and let Qk(x) be a sine polynomial of degree k + 1 with zeros 
at the k nodes. The algorithms will then closely resemble (1) and (2) with S and 
Q replacing L and J|. The algorithm for type (A) constraints is: 

Si(x) - (fi sin x)/sin xi, Qi(x) = 2 cos xi sin x - sin 2x, 

bk = [k+f - Sk(Xk+l)]/Qk(Xkil), k = 1, * * 
(3) 

Sk+l(X) = Sk(x) + bkQk(x) , 

Qk+l(X) = 2 (cos Xk+l - cos x) Qk (X). 

In order to prove the validity of this algorithm it must be shown that { Qk(X) } is 

a sequence of sine polynomials with exactly the required zeros and no others in 
(0, r). From an inspection of Qi and of the recursion formula it is evident that 
the zeros of Qk(x') are correctly located. The fact that Qk+l(X) is a sine polynomial 
of degree k + 2 follows inductively from the recursion formula with the help of the 
identity 

(4) 2cosxsinrx = sin (r + 1)x + sin (r - 1)x. 

When we apply (4) to the last of equations (3), the coefficient q, of sin rx in Qk(X) 

is transformed into the coefficient q,' of sin rx in Qk+l(X) in the following manner: 

q= 2q cos Xk+1 - q2, qk+l = qk, 

qr= 2qr cos xk+1 - (qr-1 + qr+l), r = 2, * * , J. 

In calculating bk in the algorithm (3), we need to evaluate the polynomials Sk , Qk at 
x = xk+1 . Rather than look up sin rXk+l , r1, = , k + 1, it may be advantageous 
to look up sin Xk+i and cos xk+i and then use the identity (4) to generate the sequence 
of sines at the cost of one multiplication and one addition each. 

Extension of the algorithm to accommodate constraints of type (B) follows the 
same pattern as before. Let SN satisfy all the ordinate constraints and possibly some 
of the derivative constraints; QN can be constructed to have zeros at all the nodes, 
with double zeros at each node where SN satisfies a derivative constraint. The 
algorithm to construct SN+1 to satisfy the same constraints with the additional re- 
quirenment S'?+1 (x,) = fp is: 

hN = [fr' - SN (XP)]IQN (XP)X 

SN+1(X) = SN(X) + hNQN(X), 

QN+1(X) = 2[cosx, - COSX]QN(X). 

The sequence of cosines required for the evaluation of hN may be economically 
generated by the recursion cos (r + 1)x = 2 COS x cos rx - cos (r - 1)x. Extension 
to constraints of type (C) again involves no more than writing the appropriate 
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number of primes in the above expression for hN . It should be borne in mind that 
the approximant vanishes at the endpoints of the interval [0, 'XI; consequently if 
the approximant does not have this property, we should modify it accordingly; this 
may involve subtracting a linear trend as suggested in similar circumstances by 
Lanezos [3, p. 236]. 
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A Note on Best Approximation in Ent 

By J. T. Day 

Let D be a closed convex set with positive volume V in Euclidean n-dinmensional 
space. Let f be a nonnegative function of class C2 on D (see [2]), and Q be a linear 
polynomial on D, i.e. 

Q(x)-ao+ao x1+aax2+2 + +aax , x ED. 
We consider the problem of "best" one sided approximation of f by Q in the 

sense that among all linear fnctions Q(x) satisfying 

(1) Q(x) ? f(x), x E DI 

we are looking for that one which maximizes fD Q dx. 
THEOREM 1. The problem under consideration has a unique solution ven by the 

tangent plane through the centroid p of D, provided that the eigenvalues of the Hessian 
matrix (f(X)), x E D, are nonnegative. 

The proof is by construction. Let the centroid p of D have artesian coordinates 
(P pl ?p2 ?***?pn ). Then 

(2) fQ dx= V- Q(p1, p2, . p- ) 

for all linear polynomials Q (see [3]). Since Q(p) ? f(p), we choose Q*(p) f(P) 
Choose Ql*(p) = fi(p), Q2*(p) = f2(p), , Q *(p) = fn(p). Here* fx 
(Qf/ax1) (x), etc. The above conditions determine Q*(x). 

By Taylor's theorem we have f(x) = Q*(x) + RI(x, p). The remainder R(x, p) 
is nonnegative, since the eigenvalues of the Hessian matrix are nonnegative (see 
[2]). Thus f(x) _ Q*(x). We conclude that Q*(x) is a "best" approximate. 

Suppose there were another "best" approximate T(x). Then T(p) must equal 
f(p). Consider a point x = (xI, P?, pn) where xi > pi . By Taylor's theorem 
we have 
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